닫기
3.145.16.251
3.145.16.251
close menu
KCI 등재
카오스 이론 기반 시계열의 내재적 패턴분석: 룰렛과 KOSPI200 지수선물 데이터 대상
Analysis of Intrinsic Patterns of Time Series Based on Chaos Theory: Focusing on Roulette and KOSPI200 Index Future
이희철 ( Heechul Lee ) , 김홍곤 ( Honggon Kim ) , 김희웅 ( Hee-woong Kim )
지식경영연구 22권 4호 119-133(15pages)
UCI I410-ECN-0102-2022-300-000964248

각 산업에서 대량의 데이터가 생산되면서, 빠른 경영 의사결정을 위해 시계열 패턴 예측 연구가 수많이 진행되고 있다. 하지만 데이터에 내재된 불확실성으로 인해 비선형 시계열 데이터의 특정 패턴을 예측하는 데 한계가 존재하고, 기업경영의 전략적 의사결정 어려움이 존재한다. 또한, 최근 수십 년간 불규칙한 랜덤워크 모형의 시계열 데이터 예측을 위해 산업의 목적에 맞는 금융시장 데이터를 대상으로 다양한 연구가 진행되고 있지만, 특정 규칙을 예측하고 지속가능의 기업목적 달성 어려움이 있다. 본 연구에서는 룰렛 데이터와 금융시장 데이터를 Chaos 분석기법을 이용하여 예측 결과를 비교분석하고 유의미한 결과를 도출하였다. 그리고, 본 연구는 카오스 분석이 시계열 자료를 분석하는데 있어 새로운 방법을 모색하는데 유용함을 확인하였다. 룰렛 게임의 특성을 한국 주가지수 선물의 시계열과 비교 분석하여 추세가 확인되는 경우 예측력을 높일 수 있다는 점을 도출하였으며, 불확실성이 높고 랜덤워크가 존재하는 비선형 시계열 데이터가 특정한 패턴을 가지고 있는지 판단하는데 의의가 있다.

As a large amount of data is produced in each industry, a number of time series pattern prediction studies are being conducted to make quick business decisions. However, there is a limit to predicting specific patterns in nonlinear time series data due to the uncertainty inherent in the data, and there are difficulties in making strategic decisions in corporate management. In addition, in recent decades, various studies have been conducted on data such as demand/supply and financial markets that are suitable for industrial purposes to predict time series data of irregular random walk models, but predict specific rules and achieve sustainable corporate objectives There are difficulties. In this study, the prediction results were compared and analyzed using the Chaos analysis method for roulette data and financial market data, and meaningful results were derived. And, this study confirmed that chaos analysis is useful for finding a new method in analyzing time series data. By comparing and analyzing the characteristics of roulette games with the time series of Korean stock index future, it was derived that predictive power can be improved if the trend is confirmed, and it is meaningful in determining whether nonlinear time series data with high uncertainty have a specific pattern.

1. 서론
2. 개념적 배경
3. 실증 분석
4. 실증분석결과
5. 결론 및 시사점
참고문헌
[자료제공 : 네이버학술정보]
×