닫기
216.73.216.142
216.73.216.142
close menu
KCI 등재
워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법
Multi-Document Summarization Method of Reviews Using Word Embedding Clustering
이필원 ( Pil Won Lee ) , 황윤영 ( Yun Young Hwang ) , 최종석 ( Jong Seok Choi ) , 신용태 ( Young Tae Shin )
UCI I410-ECN-0102-2022-500-000828281

다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

Multi-document refers to a document consisting of various topics, not a single topic, and a typical example is online reviews. There have been several attempts to summarize online reviews because of their vast amounts of information. However, collective summarization of reviews through existing summary models creates a problem of losing the various topics that make up the reviews. Therefore, in this paper, we present method to summarize the review with minimal loss of the topic. The proposed method classify reviews through processes such as preprocessing, importance evaluation, embedding substitution using BERT, and embedding clustering. Furthermore, the classified sentences generate the final summary using the trained Transformer summary model. The performance evaluation of the proposed model was compared by evaluating the existing summary model, seq2seq model, and the cosine similarity with the ROUGE score, and performed a high performance summary compared to the existing summary model.

1. 서 론
2. 관련 연구
3. 제안하는 다중문서 요약기법
4. 성능 평가
5. 결 론
References
[자료제공 : 네이버학술정보]
×