In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.