닫기
216.73.216.142
216.73.216.142
close menu
KCI 후보
다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교
A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison
홍준호 ( Jun-ho Hong ) , 오민지 ( Min-ji Oh ) , 조용빈 ( Yong-been Cho ) , 이경희 ( Kyung-hee Lee ) , 조완섭 ( Wan-sup Cho )
UCI I410-ECN-0102-2022-500-000231291

본 논문은 농식품 소비자패널 데이터에서 소비자의 유형을 나눌 때에 변수간 연관성이 많은 장바구니 분석에서 전처리 방법과 차원축소의 방법을 제안한다. 군집분석은 다변량 자료에서 관측 개체를 몇 개의 군집으로 나눌 때 널리 사용되는 분석기법이다. 하지만 여러 개의 변수가 연관성을 가진 경우에는 차원축소를 통한 군집분석이 더 효과적일 수 있다. 본 논문은 1,987 가구를 대상으로 조사한 식품소비 데이터를 K-means 방법을 사용하여 군집화하였으며, 군집을 나누기 위해 17개의 변수를 선정하였고, 17개의 다중공선성 문제와 군집을 나누기 위한 차원축소의 방법 중 주성분 분석과 요인분석을 비교하였다. 본 연구에서는 주성분분석과 요인분석 모두 2개의 차원으로 축소하였으며 주성분분석에서는 3개의 군집으로 나뉘었지만 분석하고자 하였던 소비 패턴에 대한 군집의 특성이 잘 나타나지 않았으며 요인분석에서는 분석가가 보고자 하는 소비 패턴의 특징이 잘 나타났다.

This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.

Ⅰ. 서 론
Ⅱ. 관련연구
Ⅲ. 연구방법
Ⅳ. 결 론
참 고 문 헌
[자료제공 : 네이버학술정보]
×