기후변화로 인해 폭염 발생 빈도 및 강도가 심해지고 있다. 도시지역은 도시열섬현상과 맞물려 폭염에 의한 피해가 더욱 심하기 때문에 면밀한 대비가 필요하다. 국외 많은 지자체에서는 폭염 대비 및 대책을 위해 다양한 공간정보를 이용하여, 열 지도를 구축 및 도시 내 서로 다른 공간적 특징을 가지는 지역별 적합한 폭염 대책을 세워 대비를 하고 있다. 열지도 구축은 폭염 대비를 위해 우선적으로 수행되어야 할 단계이며 중요하다. 열지도 구축 및 열 환경 분석 사례는 넓은 면적을 가지는 도시단위부터 좁은 면적을 가지는 지역단위까지 다양한 면적 분포를 가진다. 열지도 구축 방법은 원격탐사를 통한 방법부터 시뮬레이션을 활용하는 방까지 다양하지만, 공간적 규모에 따른 차별화된 공간정보 활용 기준은 잡혀져 있지 않아 연구자마다 각기 다른 방법을 통해 열 지도를 구축 및 열 환경을 분석하고 있다. 전술된 사유로 인해 분석 규모에 적합한 열지도 구축에 필요한 공간정보 기준이 수립될 필요가 있다. 이에 본 연구는 도시 열지도 구축을 위해 활용되는 공간정보 활용 효율화 방안을 제시하기 위해 국내외 폭염 및 도시 열 환경 분석 연구를 공간정보, 분석방법론, 최종결과물을 살펴보았다. 분석결과 공간정보 활용에 있어서는 원격탐사를 활용한 열지도 구축을 위해서는 기본 해상도인 공간, 시간, 분광해상도가 필요한 것으로 파악되었다. 시뮬레이션은 구동을 위한 입력 조건 정보인 기상데이터의 종류와 공간해상도가 분석 대상지의 규모별 상이함이 있음이 파악되었다. 따라서 원격탐사를 활용한 열지도의 경우는 공간·분광·시간 해상도를 고려해야 하며, 시뮬레이션은 구동을 위한 입력 조건인 공간해상도와 입력하는 기상 정보의 조건을 사전에 고려해야 할 것으로 사료된다. 그리고 폭염 분석을 위한 모니터링 요소의 종류를 파악한 결과 토지피복, 도시 공간적 특징, 건축물, 지형, 식생, 그림자 관련 19가지 요소 종류를 파악했으며 규모별 요소의 종류가 차이가 있는 것이 파악되었다. 본 연구를 통해 폭염 분석 시, 수행하려는 연구 대상지의 면적 규모에 적합한 공간정보 활용 및 모니터링 요소 설정에 있어 연구의 방향을 제시할 수 있을 것으로 기대한다.
The frequency and intensity of heatwaves have been increasing due to climate change. Since urban areas are more severely damaged by heatwaves as they act in combination with the urban heat island phenomenon, every possible preparation for such heat threats is required. Many overseas local governments build heat maps using a variety of spatial information to prepare for and counteract heatwaves, and prepare heatwave measures suitable for each region with different spatial characteristics within a relevant city. Building a heat map is a first and important step to prepare for heatwaves. The cases of heat map construction and thermal environment analysis involve various area distributions from urban units with a large area to local units with a small area. The method of constructing a heat map varies from a method utilizing remote sensing to a method using simulation, but there is no standard for using differentiated spatial information according to spatial scale, so each researcher constructs a heat map and analyzes the thermal environment based on different methods. For the above reason, spatial information standards required for building a heat map according to the analysis scale should be established. To this end, this study examined spatial information, analysis methodology, and final findings related to Korean and oversea analysis studies of heatwaves and urban thermal environments to suggest ways to improve the utilization efficiency of spatial information used to build urban heat maps. As a result of the analysis, it was found that spatial, temporal, and spectral resolutions, as basic resolutions, are necessary to construct a heat map using remote sensing in the use of spatial information. In the use of simulations, it was found that the type of weather data and spatial resolution, which are input condition information for simulation implementation, differ according to the size of analysis target areas. Therefore, when constructing a heat map using remote sensing, spatial, spectral, and temporal resolution should be considered; and in the case of using simulations, the spatial resolution, which is an input condition for simulation implementation, and the conditions of weather information to be inputted, should be considered in advance. As a result of understanding the types of monitoring elements for heatwave analysis, 19 types of elements were identified such as land cover, urban spatial characteristics, buildings, topography, vegetation, and shadows, and it was found that there are differences in the types of the elements by spatial scale. This study is expected to help give direction to relevant studies in terms of the use of spatial information suitable for the size of target areas, and setting monitoring elements, when analyzing heatwaves.