본 연구는 2016년 발생한 9.12 경주지진을 중심으로 경주시 건축물의 지진 취약성을 평가하고 지도를 제작하는데 목적이 있다. 지진 취약성을 평가하기위해 지질공학, 물리, 구조적 요인과 관련된 11개의 영향인자를 선정하였으며, 이는 독립변수로 적용되었다. 종속변수로는 9.12 경주지진 당시 실제 피해 입은 건축물의 위치 자료가 사용되었다. 평가 모델은 기계학습 방법의 RF와 SVM을 기반으로 구축하였으며, 훈련 및 검증 데이터 셋은 70:30 비율로 무작위 선별되었다. 정확도 검증은 ROC 곡선을 사용하여 최적 모델을 선별하였으며, 각 모델의 정확도는 RF(1.000), SVM(0.998), 예측 정확도는 RF(0.947), SVM(0.926) 로 나타났다. RF 모델을 기반으로 경주시 전체 건축물의 예측 값을 도출하였으며, 이를 등급화 하여 지진 취약성 지도를 작성하였다. 행정동 별건물 등급 분포를 살펴본 결과, 황남동, 월성동, 선도동, 내남면이 취약성이 높은 지역으로, 양북면, 강동면, 양남면, 감포읍이 상대적으로 안전한 지역으로 나타났다.
The purpose of this study is to assess the seismic vulnerability of buildings in Gyeongju city starting with the earthquake that occurred in the city on September 12, 2016, and produce a seismic vulnerability map. 11 influence factors related to geotechnical, physical, and structural indicators were selected to assess the seismic vulnerability, and these were applied as independent variables. For a dependent variable, location data of the buildings that were actually damaged in the 9.12 Gyeongju Earthquake was used. The assessment model was constructed based on random forest (RF) as a mechanic study method and support vector machine (SVM), and the training and test dataset were randomly selected with a ratio of 70:30. For accuracy verification, the receiver operating characteristic (ROC) curve was used to select an optimum model, and the accuracy of each model appeared to be 1.000 for RF and 0.998 for SVM, respectively. In addition, the prediction accuracy was shown as 0.947 and 0.926 for RF and SVM, respectively. The prediction values of the entire buildings in Gyeongju were derived on the basis of the RF model, and these were graded and used to produce the seismic vulnerability map. As a result of reviewing the distribution of building classes as an administrative unit, Hwangnam, Wolseong, Seondo, and Naenam turned out to be highly vulnerable regions, and Yangbuk, Gangdong, Yangnam, and Gampo turned out to be relatively safer regions.