Hydrogen gas has attracted considerable attention as a promising candidate for future energy resources because of its eco-friendly characteristics; however, its highly combustible characteristics should be thoroughly examined to preclude potential disasters. In this regard, a highly sensitive method for the selective detection of H2 is extremely important. To achieve excellent H2 selectivity, the utilization of a metal-organic framework (MOF) membrane can physically screen interfering gas molecules by restricting the size of kinetic diameters that can penetrate its nanopores. This paper summarizes the various endeavors of researchers to utilize the MOF molecular sieving layer for the development of highly selective H2 sensors. Further, the review affords useful insights into the development of highly reliable H2 sensors.