닫기
216.73.216.214
216.73.216.214
close menu
KCI 등재 SCOPUS
재해/재난 현장에서 취득한 대용량 무인기 영상의 클라우드 컴퓨팅 기반 처리
Cloud Computing-Based Processing of Large Volume UAV Images Acquired in Disaster Sites
한수희 ( Soohee Han )
UCI I410-ECN-0102-2021-400-001291085

본 연구에서는 재해/재난 현장에서 취득한 대용량 무인기 영상으로부터 고정밀 3차원 실감 자료를 신속하게 생성하기 위하여 상용 소프트웨어인 Agisoft Metashape와 클라우드 컴퓨팅 서비스인 Amazon web service를 이용하여 처리하는 방식을 제안하고 성능을 평가하였다. 로컬 컴퓨터를 이용하는 온프레미스 방식, Agisoft社와 Pix4D社에서 제공하는 클라우드 서비스와 비교하여, 항공삼각측량, 3차원 포인트 클라우드 및 DSM 생성, 메쉬 및 텍스처 생성, 정사 모자이크 영상 제작 등의 과정은 비슷한 시간을 소요하였다. 클라우드 방식은 대용량 자료의 업로드와 다운로드 시간을 필요로 하지만 실질적인 현장 처리가 가능하다는 분명한 장점을 보였다. 온프레미스 방식과 클라우드 방식 모두 CPU와 GPU 성능에 따라 처리 시간의 차이가 발생하지만 벤치마크를 통해 확인되는 성능 차이만큼 큰 차이는 발생하지 않았다. 그러나 저성능의 GPU가 탑재된 랩탑 컴퓨터는 지나치게 많은 시간을 소요하여 현장 처리에 적용하기 어려운 것으로 나타났다.

In this study, a cloud-based processing method using Agisoft Metashape, a commercial software, and Amazon web service, a cloud computing service, is introduced and evaluated to quickly generate high-precision 3D realistic data from large volume UAV images acquired in disaster sites. Compared with on-premises method using a local computer and cloud services provided by Agisoft and Pix4D, the processes of aerial triangulation, 3D point cloud and DSM generation, mesh and texture generation, ortho-mosaic image production recorded similar time duration. The cloud method required uploading and downloading time for large volume data, but it showed a clear advantage that in situ processing was practically possible. In both the on-premises and cloud methods, there is a difference in processing time depending on the performance of the CPU and GPU, but not so much as in a performance benchmark. However, it was found that a laptop computer equipped with a low-performance GPU takes too much time to apply to in situ processing.

1. 서론
2. 본론
3. 적용 및 결과
4. 결론
사사
주
References
[자료제공 : 네이버학술정보]
×