닫기
216.73.216.214
216.73.216.214
close menu
KCI 등재
119 신고 데이터를 이용한 자연어처리 기반 재난안전 상황 분류 알고리즘 분석
Analysis of Disaster Safety Situation Classification Algorithm Based on Natural Language Processing Using 119 Calls Data
권수정 ( Su-jeong Kwon ) , 강윤희 ( Yun-hee Kang ) , 이용학 ( Yong-hak Lee ) , 이민호 ( Min-ho Lee ) , 박성호 ( Seung-ho Park ) , 강명주 ( Myung-ju Kang )
UCI I410-ECN-0102-2021-500-001298416

인공지능의 발달로 인하여 재난 분야에서는 재난대응 지원 시스템으로 이용되고 있다. 재난은 언제 어디서든지 발생할 수 있으며, 재난 발생시 소방청 119 신고접수대에 접수되는 신고는 크게 화재, 구조, 구급, 기타 신고 등 4가지로 구분된다. 119 신고에 따른 재난 대응도 그 종류 및 상황에 따라 다르게 대응된다. 본 논문에서는 119 신고 데이터 1280개 문서를 학습 데이터 셋을 이용하여 SVM, NB, k-NN, DT, SGD, RF 상황 분류 기계학습 알고리즘을 3 클래스로 테스트한 분류 성능은 최고 92%, 최소 77%의 성능을 보였다. 인공지능의 발달로 인하여 재난 분야에서는 재난 대응 지원 시스템으로 이용되고 있다. 재난은 언제 어디서든지 발생할 수 있으며, 재난 발생 시 소방청 119 신고접수대에 접수되는 신고는 크게 화재, 구조, 구급, 기타 신고 등 4가지로 구분된다. 119 신고에 따른 재난대응도 그 종류 및 상황에 따라 다르게 대응된다. 본 논문에서는 119 신고 데이터 1280개 문서를 학습 데이터 셋을 이용하여 SVM, NB, k-NN, DT, SGD, RF 상황 분류 알고리즘을 3 클래스로 테스트한 분류성능은 최고 92%, 최소 77%의 성능을 보였다. 앞으로 다양한 분야의 재난별 데이터 셋을 확보하여 효율적인 재난 대응 연구가 필요하다.

Due to the development of artificial intelligence, it is used as a disaster response support system in the field of disaster. Disasters can occur anywhere, anytime. In the event of a disaster, there are four types of reports: fire, rescue, emergency, and other call. Disaster response according to the 119 call also responds differently depending on the type and situation. In this paper, 1280 data set of 119 calls were tested with 3 classes of SVM, NB, k-NN, DT, SGD, and RF situation classification algorithms using a training data set. Classification performance showed the highest performance of 92% and minimum of 77%. In the future, it is necessary to secure an effective data set by disaster in various fields to study disaster response.

1. 서 론
2. 재난 대응 기계학습
3. 재난 대응 환경 기계학습 모델
4. 상황인지 기계학습 분류 실험결과
5. 결 론
References
[자료제공 : 네이버학술정보]
×