본 연구에서는 고등학생들의 수학 학습양식, 성격기질별 특징을 확인하고 각 성격기질별로 수학학습 전략을 제시하고자 하였다. 이를 위해, 375명의 고등학교 1학년 학생들을 대상으로 MBTI 성격유형 검사, 수학학습 선호도 조사를 실시하여 그 결과를 분석하였다. 이 연구의 결과는 다음과 같다. 첫째, 많은 학생들이 사교육의 효과를 높게 평가하고 교과서보다는 참고서를 활용한 수학학습을 더 선호하였다. 둘째, 학습 태도, 학습 습관(개념이해 집중도), 문제해결 전략(문제이해 노력, 다양한 전략 사용), 자기 관리(메타인지) 영역에서 성격기질에 따라 통계적으로 유의미한 차이가 확인되었다. 셋째, SJ형 학생들은 마인드맵 등의 학습 전략, SP형 학생들은 장, 단기 학습목표를 꾸준히 실천하는 전략이 필요하다. NT형 학생들은 SRN(자기성찰노트)이나 수학일지를 활용한 학습 전략, NF형 학생들은 논리적 근거를 제시하는 수학학습 노트 쓰기 활동과 대수 학습에 더 많은 시간 투자가 필요하다.
The purpose of this study was to identify high school students’ mathematics learning style and its characteristics according to their personality disposition types and to propose mathematics learning strategies fit into each personality disposition type. For this purpose, MBTI personality test and survey to find mathematics learning style for 375 high school students were executed. The results were as follows. First, many students highly evaluated the effects of private education and prefer reference book to textbook. Second, there were significant differences on following variable domains of mathematics learning style such as learning attitude, learning habit(concentrativeness to concept understanding), problem solving strategies(effort for problem comprehension, use of various strategies), self management(metacognition) by MBTI personality disposition types(SJ, SP, NT, NF groups). Third, based on the results, the following mathematics learning strategies fit into each personality disposition type were recommended. SJ type students are needed to effort creative approach for open problem and to use mindmap as mathematics learning strategy. SP type students are needed to fulfill stepwise problem solving process and to effort constantly practice long/short term learning objectives. NT type students are needed to expand opportunity to study with friends and to use SRN(self reflection note) or mathematics journal writings as mathematics learning strategy. NF type students are needed to use mathematics learning note writing activity which include logical basis for each step of problem solving and to invest more time on learning algebra which need meticulous calculation.