Purpose : The purpose of this study was to investigate the effects of the frequency band pass filter on the P300 event-related potential in the working memory.
Methods : The subjects were 20 women in their 20s who applied for participation in the experiment. Event-related potentials (ERPs) were elicited using 3-back tasks for the working memory, and were recorded from Fz, Cz, and Pz scalp electrodes. The high-pass filters were set to 0.01, 0.1, and 0.3 ㎐ for analysis purposes, and the low-pass filters were set to 30 and 15 ㎐. The 3-back task was presented for a total of 100 times, among which 30 times were designated for the target stimulation (a matched number) and 70 times for the non-target stimulation (an unmatched number). The temporal interval between each stimulation was set at 1 second, while each time duration was randomly presented between 2 to 4 seconds. ERP were analyzed for the P300 recorded from Fz, Pz and Cz scalp electrodes.
Results : Latency and amplitude had no significant interaction effects in both the high- and low-pass filters. For the main effects, the latency and amplitude of the P300 event-related potential had no significant difference in the high-pass filters, but the latency had a significant difference in the low-pass filter of Fz, and the amplitude had a significant difference in the low-pass filter of Pz.
Conclusion : The results of this study showed that the less than 0.3 ㎐ high filters had no effects on the differences between the latency and amplitude of the P300 event-related potential in the working memory. The 30Hz low-pass filter, however, was found to be useful for recording the P300 event-related potential in the working memory.