닫기
216.73.216.214
216.73.216.214
close menu
KCI 등재
심층신경망을 활용한 풍속 예측 개선 모델 개발
Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network
구성관 ( Sungkwan Ku ) , 홍석민 ( Seokmin Hong ) , 김기영 ( Ki-young Kim ) , 권재일 ( Jaeil Kwon )
UCI I410-ECN-0102-2021-500-000584106

인공신경망은 뇌의 뉴런들에서 상호 작용과 경험을 통해 학습해 나가는 것을 모사해 만든 알고리즘으로, 데이터의 특성이 반영된 학습을 통하여 정확한 결과를 산출하는데 사용할 수 있는 방법이다. 본 연구에서 기상 역학 모델에서 예측된 풍속 값의 개선을 위하여 심층신경망을 이용한 모델을 제시하였다. 연구에서 제시한 심층신경망을 이용한 풍속 예측 개선 모델은 기상 역학 모델의 예측 값을 재 보정하는 모델을 구축하고 이에 대한 검증과 시험 과정 후 별도의 데이터를 통한 예측의 정확도를 높일 수 있는 것을 확인하였다. 풍속 예측의 개선을 위하여 예측 시간, 온도, 기압, 습도, 대기상태변수, 풍속 등과 같은 일반적 기상 현상 자료의 예측 값을 활용한 심층신경망을 구축하였고, 전체 데이터 중 일부 데이터는 모델의 적정성 확인용 데이터로 구분하여, 모델 구축 및 학습에 사용하지 않고 별도의 정확도를 확인하여 연구에서 제시한 방법의 적합성을 확인하였다.

Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.

Ⅰ. 서 론
Ⅱ. 심층신경망 및 기상 예보
Ⅲ. 심층신경망 활용 예측 개선 모델 개발
Ⅳ. 개발 모델 활용 풍속 예측 개선
Ⅴ. 결 론
Acknowledgments
References
[자료제공 : 네이버학술정보]
×