닫기
216.73.216.28
216.73.216.28
close menu
KCI 등재 SCOPUS
딥러닝모델을 이용한 국가수준 LULUCF 분야 토지이용 범주별 자동화 분류
Automatic Classification by Land Use Category of National Level LULUCF Sector using Deep Learning Model
박정묵 ( Jeong Mook Park ) , 심우담 ( Woo Dam Sim ) , 이정수 ( Jung Soo Lee )
UCI I410-ECN-0102-2021-400-000590456

신기후체제에 대응하여 정확한 탄소흡수 및 배출량을 산정하기 위해 토지이용 범주별 통계량 산출은 활동자료로서 매우 중요한 자료이다. 본 연구는 효과적인 토지이용 범주별 판독을 위하여 산림항공사진(이하 FAP)에 딥러닝모델을 적용하여 토지이용 범주별 자동화 판독 분류를 한 후 샘플링기법을 통해 국가단위 통계량을 산출하였다. 딥러닝모델에 적용한 데이터세트(이하, DS)는 국가산림자원조사 고정표본점 위치 기반 FAP의 이미지를 추출하여 훈련데이터세트(이하, 훈련DS)와 시험데이터세트(이하, 시험 DS)로 구분하였다. 훈련DS는 토지이용 범주별 정의에 따라 이미지별 레이블을 부여하였으며, 딥러닝모델을 학습하고 검증하였다. 검증 시 모델의 학습정확도는 학습 횟수 1500회에서 정확도가 약 89%로 가장 높았다. 학습된 딥러닝모델을 시험DS에 적용한 결과, 이미지 레이블의 판독 분류정확도는 약 90%로 높았다. 샘플링기법을 통해 범주별 분류결과에 대해 면적을 추정하여 국가통계와 비교한 결과 정합성 또한 높아 향후 LULUCF(Land Use, Land Use Change, Forestry)분야 국가 온실가스 인벤토리 보고서의 활동자료로 활용하기에 충분하다고 판단된다.

Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.

1. 서론
2. 연구대상지 및 방법
3. 결과 및 고찰
4. 결 론
사 사
References
[자료제공 : 네이버학술정보]
×