18.97.14.82
18.97.14.82
close menu
Accredited
딥러닝 기반 카메라 모델 판별
Camera Model Identification Based on Deep Learning
이수현 ( Soo Hyeon Lee ) , 김동현 ( Dong Hyun Kim ) , 이해연 ( Hae-yeoun Lee )
UCI I410-ECN-0102-2021-500-000222112

멀티미디어 포렌식 분야에서 영상을 촬영한 카메라 모델 판별을 위한 연구가 지속되어 왔다. 점점 고도화되는 범죄 중에 불법 촬영 등의 범죄는 카메라가 소형화됨에 따라 피해자가 알아차리기 어렵기 때문에 높은 범죄 발생 건수를 차지하고 있다. 따라서 특정 영상이 어느 카메라로 촬영되었는지를 특정할 수 있는 기술이 사용된다면 범죄자가 자신의 범죄 행위를 부정할 때, 범죄 혐의를 입증할 증거로 사용될 수 있을 것이다. 본 논문에서는 영상을 촬영한 카메라 모델 판별을 위한 딥러닝 모델을 제안한다. 제안하는 모델은 4개의 컨볼루션 계층과 2개의 전연결 계층으로 구성되었으며, 데이터 전처리를 위한 필터로 High Pass Filter를 사용하였다. 제안한 모델의 성능 검증을 위하여 Dresden Image Database를 활용하였고, 데이터셋은 순차분할 방식을 적용하여 생성하였다. 제안하는 모델을 3 계층 모델과 GLCM 적용 모델 등 기존 연구들과 비교 분석을 수행하여 우수성을 보였고, 최신 연구 결과에서 제시하는 수준의 98% 정확도를 달성하였다.

Camera model identification has been a subject of steady study in the field of digital forensics. Among the increasingly sophisticated crimes, crimes such as illegal filming are taking up a high number of crimes because they are hard to detect as cameras become smaller. Therefore, technology that can specify which camera a particular image was taken on could be used as evidence to prove a criminal's suspicion when a criminal denies his or her criminal behavior. This paper proposes a deep learning model to identify the camera model used to acquire the image. The proposed model consists of four convolution layers and two fully connection layers, and a high pass filter is used as a filter for data pre-processing. To verify the performance of the proposed model, Dresden Image Database was used and the dataset was generated by applying the sequential partition method. To show the performance of the proposed model, it is compared with existing studies using 3 layers model or model with GLCM. The proposed model achieves 98% accuracy which is similar to that of the latest technology.

1. 서 론1)
2. 관련 연구 및 기반 기술
3. 딥러닝 기반 카메라 모델 판별 알고리즘
4. 실험 결과
5. 결 론
References
[자료제공 : 네이버학술정보]
×