Purpose: The purpose of this study is to propose a new Risk Priority Number(RPN) evaluation method which analyzes value of product functions by mining customer opinions in Social Network Service(SNS).
Methods: A traditional RPN is measured by three evaluation standards (Severity, Occurrence, Detection) which are analyzed by manufacturing engineers and researchers. On the other hand, these standards are analyzed by customers’ viewpoints through SNS opinion mining in this research. In order to extract customer feedbacks from textual data sets, the methodology in this paper implies natural language processing, hereby collecting product related data sets and analyzing the opinions automatically. An emotional polarity of an opinion indicates severity, while the number of negative opinion shows occurrence, and the entire number of customer opinion refers to detection.
Results: The results of this study are as follows; As a result of the CRPN evaluation, it is confirmed that the features evaluated as risky are highly likely to be improved in the next series. Therefore, CRPN is an effective risk assessment model that reflects customer feedback.
Conclusion: Reflecting customer feedback is a useful tool for risk assessment of the product as well as for developing new products and improving existing products.