기존의 LiDAR 자료 기반의 건물 외곽선 추출 연구에서는 고정밀 포인트클라우드를 사용하여 자동으로 건물 지붕 영역을 분류하고 이를 입력자료로 하여 건물 외곽선을 추출했다. 반면에 스테레오 영상 정합을 통해 생성된 DSM은 고정밀 포인트클라우드 자료와 달리 원시 자료인 포인트클라우드에 잡음과 비어있는 격자가 존재하기 때문에 완전한 자동으로 건물 지붕 영역을 분류하는데 어려움이 있다. 따라서 본 논문에서는 스테레오 영상 정합을 통해 생성된 DSM에 사용자 입력을 통한 watershed segmentation 기법을 적용하여 반자동으로 건물의 3차원 외곽선을 추출하는 기법을 제안한다. 제안된 기법은 DSM 내 건물 영역을 표시하는 단순한 마커 정보만을 입력하기 때문에 사용자 입력을 최소화한 방식으로 건물의 3차원 외곽선을 생성할 수 있다.
In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.