작황 모니터링에서 바이오매스의 정확한 평가를 위해서는 정확하고 신속한 작물 생육 상황 등 현장자료의 확보가 필수적이다. 또한, 바이오매스의 평가는 작황 모니터링 및 수확량 예측에 활용된다. 무인기 영상은 작물의 성장에 따라 빠르게 수집할 수 있기 때문에 정밀농업에서 포장내 공간변이 파악 및 분석에 사용되고 있다. 본 연구는 원격탐사 기술을 이용한 동계작물 바이오매스 평가 방법 개발을 위하여 식생지수(ExG)에 의한 식생 피복률(VF)과 작물 표고 모형(CSM) 기반의 초고(PH)를 이용하여 보리와 밀을 대상으로 바이오매스 평가 모델을 개발하는 것을 목적으로 하였다. 식생 피복률, 초고 및 상호작용 항을 독립변수로 하여 다중 선형 회귀 모델을 구축한 결과, 5가지 품종의 결정계수는 0.84~0.99로 나타났으며, 보리와 밀의 결정계수 및 평균 제곱근 오차는 각각 0.91, 0.90 및 102.09, 110.87 g/㎡으로 나타났다. 따라서 무인기 영상을 활용한 동계작물의 바이오매스 평가 및 작황 모니터링이 가능한 것으로 판단된다.
In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index (E × G) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and VF × PH) and aboveground dry weight provided good fits with coefficients of determination (R2) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was 102.09 g/㎡. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was 110.87 g/㎡. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.