닫기
216.73.216.214
216.73.216.214
close menu
KCI 등재
능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류
Classification of Crop Cultivation Areas Using Active Learning and Temporal Contextual Information
김예슬 ( Ye Seul Kim ) , 유희영 ( Hee Young Yoo ) , 박노욱 ( No Wook Park ) , 이경도 ( Kyung Do Lee )
DOI 10.11108/kagis.2015.18.3.076
UCI I410-ECN-0102-2016-530-000361655

이 논문에서는 작물 재배지의 분류를 목적으로 능동 학습과 과거 토지 피복도 기반의 시간 문맥정보를 결합하는 분류 방법론을 제안하였다. 신뢰성 높은 훈련 자료의 추출을 위하여 능동 학습기반 반복 분류를 적용하였으며, 과거 토지 피복도의 작물 재배 규칙을 시간 문맥 정보로 정량화하여 능동 학습 기법의 적용시 훈련 자료의 할당과 작물 간 분광학적 혼재 효과 완화에 이용하였다. 제안 분류 방법론의 적용 가능성을 평가하기 위해 미국 Illinois 주의 옥수수와 콩 재배지역의 구분을 목적으로 MODIS 시계열 식생지수 자료와 과거 cropland data layer(CDL) 자료를 이용한 사례연구를 수행하였다. 사례연구 결과, 초기 감독 분류 결과에서 나타났던 옥수수와 콩의 오분류와 기타 작물과 비작물의 오분류 양상이 능동 학습 기반 반복 분류를 통해 완화되었다. 그리고 CDL 자료로부터 추출한 시간 문맥 정보를 추가적으로 결합함으로써 주요 작물에서 나타나는 과추정 양상이 완화되어 가장 우수한 분류 정확도를 나타내었다. 따라서 제안 기법이 양질의 훈련 자료의 확보가 쉽지 않은 작물 재배지의 분류에 유용하게 적용될 수 있음을 확인하였다.

This paper presents a classification method based on the combination of active learning with temporal contextual information extracted from past land-cover maps for the classification of crop cultivation areas. Iterative classification based on active learning is designed to extract reliable training data and cultivation rules from past land-cover maps are quantified as temporal contextual information to be used for not only assignment of training data but also relaxation of spectral ambiguity. To evaluate the applicability of the classification method proposed in this paper, a case study with MODIS time-series vegetation index data sets and past cropland data layers(CDLs) is carried out for the classification of corn and soybean in Illinois state, USA. Iterative classification based on active learning could reduce misclassification both between corn and soybean and between other crops and non crops. The combination of temporal contextual information also reduced the over-estimation results in major crops and led to the best classification accuracy. Thus, these case study results confirm that the proposed classification method can be effectively applied for crop cultivation areas where it is not easy to collect the sufficient number of reliable training data.

[자료제공 : 네이버학술정보]
×