본 연구는 항공 초분광영상을 사용한 수질추정 활용을 검토하고 한강일부분에 대해 가용한 측정자료를 이용하여 초분광영상 기반의 수질추정을 테스트하였다. 원격탐사에 의한 수질추정은 수체에 대한 downwelling과 수체 내에서의 산란과 반사에 대한 관측정보를 이용하는 방법과 원격탐사 센서에 도달하는 upwelling과 수질측정정보와의 선형적 회귀분석을 구하는 방법이 선호된다. 두 방법 모두 유의미한 결과를 도출하지만 수질정보나 산란정보 등 추정에 필요한 보조자료에 의한 영향이 더 클 것으로 판단되었다. 수질추정 테스트는 팔당댐 하류에 위치한 한강의 일부분에 대해서 적용되었다. AISA eagle 초분광센서로 취득된 자료와 수질관측정보를 선형적 회귀분석을 통한 방법을 적용하였다. 기존 문헌에서 제시된 밴드조합에 대해서 회귀분석한 결과 유의미한 밴드조합으로 -24.847 + 0.013L560의 회귀식을 얻었다 (L560은 560 nm 파장에서의 radiance로 R2=0.985). 다중분광영상을 이용했을 경우의 결과와 비교하기 위해서 spectral resampling을 통해 Landsat TM 영상을 생성하여 -55.932 + 33.881(TM, TM3)의 회귀식을 얻을 수 있었다(TM, TM3는 radiance로, R2=0.968). 부유물질 농도는 수질측정지점에서 약 3.75 mg/l 이고, 초분광영상으로 추정된 농도는 약 3.65 mg/l, 시뮬레이션된 TM은 약 5.85 mg/l 로 다중분광영상을 이용했을 경우 과대 추정하는 경향을 보였다. 항공 초분광영상의 활용가치를 높이고 보다 정밀한 값을 추정하기 위해서 영상 전반에 걸친 sun glint 와 같은 영향을 최소화하기 위해 태양고도각을 고려하여 정교한 비행계획을 구성하고 체계적 전처리와 검·보정 체계를 갖출 필요가 있다고 사료된다. 일반적으로 적용된 방법에 따른 테스트로, 대기보정의 정밀성과 부족한 수질측정 샘플자료, 분광밴드의 검색, 적합한 선형회귀모델의 선택, 그리고 정량적 검증방법과 같은 몇 가지 문제점과 제약사항들을 발견할 수 있었다.
This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows -24.847 + 0.013L560 as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.