닫기
216.73.216.182
216.73.216.182
close menu
KCI 등재 SCOPUS
자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지
Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index
박노욱 ( No Wook Park ) , 유희영 ( Hee Young Yoo ) , 신정일 ( Jung Il Shin ) , 이규성 ( Kyu Sung Lee )
UCI I410-ECN-0102-2013-560-002130289

이 논문에서는 초분광 영상으로부터 이상값을 탐지하기 위해 자료 변환 기반 특징 추출과 선정 및 국소적 자기상관지수를 이용하는 2단계 방법론을 제안한다. 초분광 영상이 제공하는 중복된 분광 정보들의 축약을 위해 우선적으로 주성분 변환과 3차원 웨이브렛 변환을 적용하였다. 그리고 축약된 자료 변환 기반특징을 대상으로 왜도와 국소적 왜도 비율을 함께 고려하여 이상값 탐지를 위한 유효 특징을 선정하였다. 최종적으로 기존 분광 정보만을 이용하는 이상값 탐지 방법론들에 공간 자기상관성을 함께 고려할 수 있도록국소적 자기상관지수(LISA)를 이상값 탐지 방법론으로 적용하였다. 제안 방법론의 적용성 평가를 위해 항공 CASI 자료를 대상으로한 실험을 수행하였다. 실험 결과, 기존 분광 정보만을 고려하는 RX detector나고유값 기반 주요 주성분만을 이용하는 경우에 비해 유효 특징 선정과 연계된 LISA 통계값이 높은 탐지 능력을 나타내었다. 또한 3차원 웨이브렛 변환 기반 저주파와 고주파 특징들을 결합한 경우가 유효 주성분을 사용하는 경우에 비해 가장 높은 탐지 성능을 나타냈다.

This paper presents a two-stage methodology for anomaly detection from hyperspectral imagery that consists of transform-based feature extraction and selection, and computation of a local spatial auto-correlation statistic. First, principal component transform and 3D wavelet transform are applied to reduce redundant spectral information from hyperspectral imagery. Then feature selection based on global skewness and the portion of highly skewed sub-areas is followed to find optimal features for anomaly detection. Finally, a local indicator of spatial association (LISA) statistic is computed to account for both spectral and spatial information unlike traditional anomaly detection methodology based only on spectral information. An experiment using airborne CASI imagery is carried out to illustrate the applicability of the proposed anomaly detection methodology. From the experiments, anomaly detection based on the LISA statistic linked with the selection of optimal features outperformed both the traditional RX detector which uses only spectral information, and the case using major principal components with large eigen-values. The combination of low- and high-frequency components by 3D wavelet transform showed the best detection capability, compared with the case using optimal features selected from principal components.

[자료제공 : 네이버학술정보]
×