글로벌 포지셔닝 시스템(GPS)의 기술이 점점 발전하고 있으나, 그 정확성은 건물의 내부나 지하도로에서의 위치인식이 아닌, 실외에서의 위치인식에서만 적합하다. 건물의 내부나 지하도로에 대한 위치 인식의 응용분야에 대하여, 글로벌 포지셔닝 시스템은 빌딩의 내부나 지하도로에 서 정확한 위치인식을 요구 받을 경우, 건축구조물들로 인하여 정확성을 달성할 수 없다. 왜냐하면 사람이 필요로 하는 공간은 건물의 내부나 지하도로에서 수 평방미터에 불과한 매우 작은 공간이기 때문이다. 위치추정에 기반을 둔 수신신호강도(RSS)는 거의 모든 건물과 지하도로에서 수신이 가능한 무선 근거리통신망, IEEE 802.11, WiFi 전파신호 위치추정을 이용한 방안으로서, 특별히, 매우 좋은 선택이 될 수 있다. 이와 같은 위치추정시스템들의 근본적인 필요성은 특정 위치에서 수신신호 강도를 이용하여 통신기지국으로부터 모바일장치에 이르는 위치의 평가를 가능하도록 하는 것이다. 이와 같은 과정에서 발생하는 다중 경로 페이딩 현상들은 위치추정에서 불확실성의 원인으로서, 수신신호강도를 예측하기 어렵게 만든다. 이와 같은 문제들을 해결하기 위하여, 신경망과 푸 시-풀 평가 방법의 결합은 건물의 내부나 지하도로에서 모바일장치들을 이용하여 위치의 결정을 학습하고, 결정할 수 있도록 적용된다.
Although the development of Global Positioning System (GPS) are more and more mature, its accuracy is just acceptable for outdoor positioning, not positioning for the indoor of building and the underpass. For the positioning application area for the indoor of building and the underpass, GPS even cannot achieve that accuracy because of the construction materials while the requirement for accurate positioning in the indoor of building and the underpass, because a space, a person is necessary, may be very small space with several square meters in the indoor of building and the underpass. The Received Signal Strength (RSS) based localization is becoming a good choice especially for the indoor of building and the underpass scenarios where the WiFi signals of IEEE 802.11, Wireless LAN, are available in almost every indoor of building and the underpass. The fundamental requirement of such localization system is to estimate location from Access Point (AP) to mobile device using RSS at a specific location. The Multi-path fading effects in this process make RSS to fluctuate unpredictably, causing uncertainty in localization. To deal with this problem, the combination for the method of Neural Networks and Push-Pull Estimation is applied so that the carried along the devices can learn and make the decision of position using mobile device where it is in the indoor of building and the underpass.