데이터 마이닝은 다양한 분야에서 축적된 데이터로부터 필요한 지식을 탐사하기 위하여 널리 이용되고 있다. 연관규칙을 탐사하기 위하여 이벤트의 빈발 횟수에 기반을 둔 많은 방법들이 존재하지만, 이들은 이벤트가 연속적으로 발생하는 스트림 환경에는 적합하지 않다. 또한 실시 간으로 연관규칙을 탐사해야 하는 스트림 환경에 적용하기에는 많은 비용이 든다. 이 논문에서는 스트림 환경에서 연관규칙을 탐사하기 위한 새로운 방법을 제안한다. 제안하는 방법은 데이터 스트림에서 목적 이벤트의 발생 간격에 따른 가변 윈도우로부터 이벤트의 존재 유무에 근거 한 COBJ(Count object) 계산법을 이용하여 데이터 항목을 추출한다. 추출된 데이터는 FPMDSTN(Frequent Pattern Mining over Data Stream using Terminal Node) 알고리즘을 통해 실시간으로 연관규칙을 탐사한다. 실험 결과를 통해 제안하는 방법이 기존의 방법에 비해 스트림 환경 에 효율적임을 보인다.
Data Mining is widely used to discover knowledge in many fields. Although there are many methods to discover association rule, most of them are based on frequency-based approaches. Therefore it is not appropriate for stream environment. Because the stream environment has a property that event data are generated continuously. it is expensive to store all data. In this paper, we propose a new method to discover association rules based on stream environment. Our new method is using a variable window for extracting data items. Variable windows have variable size according to the gap of same target event, Our method extracts data using COBJ (Count object) calculation method, FPMDSTN (Frequent pattern Mining over Data Stream using Terminal Node) discovers association rules from the extracted data items. Through experiment, our method is more efficient to apply stream environment than conventional methods.