Long chain fatty acids (LCFAs) are transported into cells via plasma transporters, are activated to fatty acyl-CoA by fatty acyl-CoA synthase (ACS), and enter mitochondria via the carnitine system (CPT1/CACT/CPT2). The mitochondrial carnitine system plays an obligatory role in β-oxidation of LCFAs by catalyzing their transport into the mitochondrial matrix. Fatty acyl-CoAs are oxidized via the β-oxidation pathway, which results in the production of acetyl-CoA. The acetyl-CoA can be imported into the tricarboxylic acid (TCA) cycle for oxidation in the mitochondrial matrix or can be used for malonyl-CoA synthesis by acetyl-CoA carboxylase 2 (ACC2) in the cytoplasm. In skeletal muscle, ACC2 catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, which is a potent endogenous inhibitor of carnitine palmitoyltransferase 1 (CPT1). Thus, ACC2 indirectly inhibits the influx of fatty acids into the mitochondria. Fatty acid metabolism can also be regulated by malonyl-CoA-mediated inhibition of CPT1.