Objective: The roots, leaves, flowers, stems and seeds of Cirsium japonicum var. ussuriense are often used in treatment of human diseases such as hemorrhage, blood congestion and inflammation. Focusing our attention on natural and bioavailable sources of antioxidants and anti-inflammation, we undertook to investigate the antioxidant and anti-inflammatory properties of Cirsium japonicum var. ussuriense used as a folk medicine in Korea. Methods: The extracts of the leaves, stems, flowers, seeds and roots from C. japonicum var. ussuriense were prepared by extracting with water or 80% ethanol. Total flavonoids and polyphenols were measured by a colorimetric assay. The free radical scavenging activity of the extract was analyzed by the DPPH (1,1-diphenyl-2-picryl hydrazyl), ABTS (2,2`-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and Griess reagent assay. An oxidative product of nitric oxide (NO), was measured in the culture medium by the Griess reaction. The level of prostaglandin E2 (PGE2 ) was measured by enzyme-linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were measured by Western blot analysis. Results: Total flavonoid and polyphenol amounts of the leaves (CLE) and flowers (CFE) showed higher than those of the seed extract (CSE), stem extract (CSTE) and roots (CRE). CLE and CFE also showed the high antioxidant activities such as DPPH, NO-like and ABTS radical scavenging activity. An antioxidant activities of these water extracts showed higher than those of 80% ethanol extracts. We investigated the anti-inflammatory effects of CLE on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. CLE significantly suppressed the levels of the inflammatory mediators such as NO and prostaglandin E2 (PGE2) in dose dependant. Furthermore, the levels of iNOS and COX-2 protein expressions were markedly suppressed by the treatment with CLE extract in a dose dependent manner. Conclusions: These results suggest that CLE water extract has a higher anoxidant and anti-inflammatory activity, these properties may contribute to the oxidative and inflammatory related disease care.