Restricted Hypercube-Like(RHL) 그래프는 교차큐브, 뫼비우스큐브, 엠큐브, 꼬인큐브, 지역꼬인큐브, 다중꼬인큐브, 일반꼬인큐브와 같이 유용한 상호연결망들을 광범위하게 포함하는 그래프군이다. 본 논문에서는 m≥4 인 m-차원 RHL 그래프 G에 대해서 임의의 에지 집합 F⊂E(G), |F|≤m-2, 가 고장일 때, 고장 에지들을 제거한 그래프 G\F는 임의의 서로 다른 두 정점 s와 t에 대해서 dist(s, V(F))≠1 이거나 dist(t, V(F))≠1이면 해밀톤 경로가 있음을 보인다. V(F)는 F에 속하는 에지들의 양 끝점들의 집합이고 dist(v, V(F))는 정점 v와 집합 V(F)의 정점들 간의 최소 거리이다.
Restricted Hypercube-Like (RHL) graphs are a graph class that widely includes useful interconnection networks such as crossed cube, Mobius cube, Mcube, twisted cube, locally twisted cube, multiply twisted cube, and generalized twisted cube. In this paper, we show that for an m-dimensional RHL graph G, m≥4, with an arbitrary faulty edge set F⊂E(G), |F|≤m-2, graph G\F has a hamiltonian path between any distinct two nodes s and t if dist(s, V(F))≠1 or dist(t, V(F))≠1. Graph G\F is the graph G whose faulty edges are removed. Set V(F) is the end vertex set of the edges in F and dist(v, V(F)) is the minimum distance between vertex v and the vertices in V(F).