이 논문은 분광 영상정보만으로 구분력이 상대적으로 떨어지는 분류 항목들의 분류 정확도 향상을 목적으로 기 존재하는 토지피복도로부터 계산된 시간 문맥 정보를 결합하는 확률론적 분류 방법론을 제안하였다. 기 존재하는 토지피복도와 고려하고 있는 시기의 훈련 집단으로부터 분류 항목간 전이 확률을 계산하여 이를 사전 확률로 간주하였다. 분광 영상정보로부터 얻어지는 조건부 확률을 사전 확률과 결합하여 최종적인 사후 확률을 계산하여 분류 항목을 결정하였다. 제안 기법은 기존 시간 문맥 정보를 결합할 때 많은 계산량을 요구하는 방법론들과 달리, 확률론적 분류 방법에 쉽게 적용이 가능한 장점이 있다. 시계열 MODIS 자료를 이용한 농작물 분류 사례 연구를 수행하여, 제안 기법의 적용가능성을 검증하였다. MODIS 자료의 낮은 공간 해상도로 인한 혼재 효과로 분광 영상정보만으로 구분력이 떨어지는 분류 항목들은 시간문맥 정보를 고려함으로써 상대적인 구분력이 향상되어 최종적으로 향상된 분류 정확도를 나타내었다. 따라서 제안 기법은 분류 정확도의 향상과 더불어, 기제작된 토지피복도의 갱신에도 효과적으로 이용될 수 있을 것으로 기대된다.
A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.