동형이의어는 여러 가지 의미를 가진 단어를 의미한다. 문장의 의미를 이해하기 위해서는 필수적으로 문장에 포함된 동형이의어의 의미를 결정해야 한다. 기존의 단어 의미 중의성 연구들은 공기 빈도를 기반으로 해결하였다. 하지만, 동사의 경우에는 정확도 향상을 위해서 격 정보가 중요하다. 왜냐하면, 동사 동형이의어의 의미는 행위의 주체나 객체에 따라 결정되어서 종속격(목적격, 부사격, 보격) 정보가 필요하며, 동사 동형이의어 의미마다 서로 다른 격 정보가 필요하기 때문이다. 본 논문에서는 한국어 격 정보를 적용한 동사 의미 중의성 해소를 제안한다. 격 정보는 표준국어대사전에 명시된 조사 정보를 이용하였다. 실험은 고빈도 동형이의어 12개를 대상으로 하였으며, 실험결과 정확도가 기존의 97.3%에서 98.7%로 1.34% 향상되었다. 이는 원래의 오류율을 2.7%에서 1.3%으로 절반정도 줄였다.
Homographs can have multiple senses. In order to understand the meaning of a sentence, it is necessary to identify which sense is used for each word in the sentence. Previous researches on this problem heavily relied on the word co-occurrence information. However, we noticed that in case of verbs, information about subordinating cases of verbs can be utilized to further improve the performance of word sense disambiguation. Different senses require different sets of subordinating cases. In this paper, we propose the verb sense disambiguation using subordinating case information. The case information acquire postposition features in Standard Korean Dictionary. Our experiment on 12 high-frequency verb homographs shows that adding case information can improve the performance of word sense disambiguation by 1.34%, from 97.3% to 98.7%. The amount of improvement may seem marginal, we think it is meaningful because the error ratio reduced to less than a half, from 2.7% to 1.3%.