Hyperion 영상의 노이즈는 주로 대기 효과와 센서의 기계오류, 신호변환 때문이다. 보정되지 않은 밴드, 중복밴드, 모든 대기흡수에 영향을 많이 받는 밴드가 모두 제거되어도, 여전히 노이즈 밴드가 존재한다. 영상처리에 사용할 선명하고 안정된 밴드를 선택하기 위해 육안으로 영상을 간단하게 검사할 수 있지만, 이는 수동으로 이루어지는 비효율적이고 주관적인 방법이다. 본 논문에서 우리는 노이즈 추정과 자동 밴드 선택을 위해 극단화소비 사용을 제안한다. 이를 위해 기존에 사용되던 SNR, 엔트로피와 극단화소비를 비교하였다. 첫째, 상대적으로 노이즈가 적은 ALI 영상에 Gaussian 노이즈, salt & pepper 노이즈, Speckle 노이즈를 부가하여 노이즈량과 각 통계량 사이의 관계를 살펴보았다. 둘째, Hyperion 영상에서 추출된 세 개 통계량에 대해 기대최대화 분석을 수행하여 자동으로 밴드를 선택하였다. Hyperion 데이터는 시각적 평가에 의해 5단계로 구분되어 평가 자료로 사용되었다. 실험 결과에서 극단화소비가 Hyperion 영상의 밴드 선택에 효과적으로 사용될 수 있었다.
The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor`s instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.