닫기
3.22.250.18
3.22.250.18
close menu
}
KCI 등재
주식 투자 추천 시스템을 위한 효율적인 저장 구조
Efficient Storage Structures for a Stock Investment Recommendation System
하유민 ( You Min Ha ) , 김상욱 ( Sang Wook Kim ) , 박상현 ( Sang Hyun Park ) , 임승환 ( Seung Hwan Lim )
UCI I410-ECN-0102-2012-510-000312949

규칙 탐사는 주어진 데이터베이스로부터 빈번하게 발생하는 패턴들을 발견하는 연산이다. 규칙 탐사 연산을 이용하여 주식 데이터베이스로 부터 유용한 규칙들을 발견하고 이를 토대로 주식 투자자들에게 주식의 매매를 적절한 시점에 추천할 수 있다. 본 논문에서는 이러한 주식 투자 시스템에서 질의를 효율적으로 처리하기 위한 저장 구조에 관하여 논의한다. 먼저, 주식 투자 추천을 지원하기 위한 다섯 가지 저장 구조들을 제안하고, 각 구조들의 특징과 장단점을 비교한다. 또한, 실제 주가 데이터를 이용한 실험을 통하여 제안된 저장 구조들의 성능을 검증한다. 실험 결과에 의하면, 히스토그램을 이용한 저장 구조의 경우, 기존의 기법에 비하여 질의 처리 성능이 약 170배 개선되는 것으로 나타났다.

Rule discovery is an operation that discovers patterns frequently occurring in a given database. Rule discovery makes it possible to find useful rules from a stock database, thereby recommending buying or selling times to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investments. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure improves the query performance of the previous one up to about 170 times.

[자료제공 : 네이버학술정보]
×