닫기
18.97.14.81
18.97.14.81
close menu
Accredited
비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구
The Bayesian Analysis for Software Reliability Models Based on NHPP
이상식 ( Lee Sang Sig ) , 김희철 ( Kim Hui Cheol ) , 송영재 ( Song Yeong Jae )
UCI I410-ECN-0102-2009-000-003755737

본 논문에서는 비동질 포아송 과정(NHPP)에 기초한 소프트웨어 에러 현상에 대한 신뢰도 모형을 고려하고 사전정보(Prior information)를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 대수형 포아송 실행시간 모형(Logarithmic Poisson model), Crow 모형 그리고 Rayleigh 모형에 대하여 베이지안 모수 추정방법을 적용하였다. 효율적 모형을 위하여 이들 모형에 관한 모형선택을 편차자승합(SSE)의 합을 이용하여 시행하였고 모수의 추정을 위해서 마코브체인 몬테카를로(MCMC) 기법중에 하나인 깁스샘플링(Gibbs sampling)과 메트로폴리스 알고리즘을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 Musa의 T1 자료를 이용하여 모수 및 신뢰도를 추정한 수치 결과를 나열하였다.

This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP) and performs Bayesian inference using prior imformation. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. The parametric inferences of the model using Logarithmic Poisson model, Crow model and Rayleigh model is discussed. Bayesian computation and model selection using the sum of squared errors. The numerical results of this models are applied to real software failure data. Tools of parameter inference was used method of Gibbs sampling and Metropolis algorithm. The numerical example by T1 data (Musa) was illustrated.

[자료제공 : 네이버학술정보]
×