The commercial availability of processed heterogenous bone has provided the surgeons with almost unlimited supply, avoidance of additional operation and prevention of the postoperative complications. In addition to these merits, unnecessary bone bank, easy availibility and storage have been achieved. The purpose of this study was to compare and examine the healing capacity of Kiel bone, Pyrost and Osteovit which used as the processed heterografts for the reconstruction of bony defect. Twenty rabbits weighing about 1.7-2.0 Kg were selected and divided into two groups. In experimental group A, the left mandibular defect was allowed to fill with blood, and the right defect was filled with Kiel bone. In experimental group B, the left defect was grafted with Pyrost, and the right with Osteovit. The experimental animals were sacrified after 1, 2, 4 and 8 weeks and the grafted site was studied histologically. To evaluate the strength of healed bone, 2 rabbits from each experimental group and a nonoperated control were sacrified at the 6th week after implantation and used for biometric testing on universal testing machine. The results obtained were as follows; l. It was considered that these heterogenous bone grafts has feeble or absent immunogenicity since all of them appeared to evoke little inflammatory or forign body reaction. 2. In all experimental groups, new bone formation began from the adjacent region of host bone and extended progressively into the defect sites. New bone was partly formed within the intertrabecular space of the implant and gradually united with the bone that formed at the margin of the host bone. 3. With Pyrost bone formation was most rapid and prominent comparing with other graft materials. 4. Osteovit was begun to be absorbed from 2 weeks, and Kiel bone from 4 weeks, however Pyrost was remained to be intact until the end of 8 weeks. 5. As the results of tensile test, the mean values of maximum tensile stress were 1.11 Kgf/mm2 in Pyrost implanted specimens, 0.85 Kgf/mm2 in Osteovit, 0.42 Kgf/mm2 in Kiel bone, 0.66 Kgf/mm2 in blood filled specimens and 1.13 Kgt/mm2 in control. These results indicate that heterogenous bones grafted have little antigenicity to the host tissue, and that they mediate effectively osteoconduction by providing the scaffold for the bone formation. Pyrost and Osteovit appeared to be suitable for the clinical use.