Molecular markers for alder, Alnus firma Sieb. et Zucc., have not been studied extensively. Here, we used amplified fragment length polymorphism (AFLP) to investigate genetic relationships among 15 natural populations. EcoRI-ACG + Msel-CTG combinations revealed the highest polymorphism (62.2%). A total of 171 DNA fragments were identified. On average, 58.1% of the AFLP markers that were generated using four primer pairs were polymorphic. Diversity was insignificant among the populations. The combination of a wind-pollinated, outcrossing breeding system along with large population sizes, and the ability to regenerate by stump sprouting may explain the high level of genetic diversity within this species. The majority (98%) of the genetic variance resided within populations. The average number of individuals that were exchanged between populations per generation was very high (N_(e)m=12.3). Gene dispersal in alder is apparently by seed dispersalvia water and human activity as well as through pollen. Five individuals per population were claded in the same cluster.