Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as 1.72E-4 ± 1.2E ± 0(production worker; case A), 9.62E-5 ± 1.44E-5(manger; case B), 6.90E-5 ± 1.16E+0(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.