With the recent spread of digital content, more people have been watching the digital content of TV programs on their PCs or mobile devices, rather than on TVs. With the change in such media use pattern, genres(types) of broadcast programs change in the flow of the times and viewers’ trends. The programs that were broadcast on TVs have been released in digital content, and thereby people watching such content change their perception. For this reason, it is necessary to newly and differently classify genres(types) of broadcast programs on the basis of digital content, from the conventional classification of program genres(types) in broadcasting companies or relevant industries. Therefore, this study suggests a plan for newly classifying broadcast programs through using machine learning with the log data of people watching the programs in online media and for applying the new classification. This study is academically meaningful in the point that it analyzes and classifies program types on the basis of digital content. In addition, it is meaningful in the point that it makes use of the program classification algorithm developed in relevant industries, and especially suggests the strategy and plan for applying it.