A comparison of imputation methods using nonlinear models
1. 서론 2. 비선형 모델을 이용한 결측값 대체 방법 3. 모의실험 4. 결론 References
자료에는 다양한 원인에 의해 결측이 발생한다. 만약 결측치를 제외하고 완전히 관찰된 자료만으로 분석을 실시한다면 결측자료 메커니즘이 완전임의결측이 아닌 경우 결과에 편향이 발생하거나 제외된 개체로 인한 정보의 손실로 추정의 정밀도가 약화된다. 결측이 하나의 변수에서만 일어나지 않기 때문에, 자료에 변수가 많을 수록 이 문제는 심화된다. 문제를 개선하기 위해 결측치를 대체하는 여러가지 방법들이 제안되었다. 하지만 모수적인 모형을 이용한 대체 방법들은 가정에 위배되는 현실 데이터에는 적합하지 않다. 따라서 본 연구에서는 자료의 분포 가정에 덜 영향을 받는 커널, 리샘플링, 스플라인 방법을 활용한 비선형 대체 방법들을 리뷰하고 필요한 경우 기존의 비선형 대체방법에 대체클래스를 사용하여 대체값의 정확도를 높이거나 랜덤성을 가지는 오차를 더해주어 추정치의 분산이 적게 추정되는 문제를 개선하는 확장된 결측 대체 방법을 제안한다. 본 연구에서 고려한 여러 가지 대체 방법들은 다양한 모의자료 설계 하에서 성능을 비교하였다. 모의실험 결과, 비선형 대체 방법들은 각 설계 하에 다른 성능을 보이며 전반적으로 커널 회귀나 스플라인을 활용한 대체 방법들이 좋은 성능을 보였다. 더불어, 확장된 대체 방법은 기존의 대체 방법이 가지는 문제점을 개선함을 확인할 수 있었다.
Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models
I410-ECN-0102-2019-300-001407710
한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.
이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.
간행물명 | 수록권호 |
---|---|
|
27권 5호 ~ 27권 5호 |
|
33권 5호 ~ 33권 5호 |
|
33권 4호 ~ 33권 4호 |
|
27권 3호 ~ 27권 4호 |
|
33권 3호 ~ 33권 3호 |
|
33권 2호 ~ 33권 2호 |
|
27권 2호 ~ 27권 2호 |
|
27권 1호 ~ 27권 1호 |
|
33권 1호 ~ 33권 1호 |
통계연구 |
21권 0호 ~ 21권 0호 |
|
32권 6호 ~ 32권 6호 |
|
32권 6호 ~ 32권 6호 |
|
26권 6호 ~ 26권 6호 |
|
32권 5호 ~ 32권 5호 |
|
26권 5호 ~ 26권 5호 |
|
32권 4호 ~ 32권 4호 |
|
26권 4호 ~ 26권 4호 |
|
32권 3호 ~ 32권 3호 |
|
26권 3호 ~ 26권 3호 |
|
32권 2호 ~ 32권 2호 |
자료제공: 네이버학술정보 |
---|
자료제공: 네이버학술정보 |
---|
본 자료는 원문파일이 존재하지 않거나 서비스를 위한 준비 중입니다.
빠른 시일 내에 서비스할 수 있도록 노력하겠습니다.
관련문의사항은 kiss@kstudy.com 으로 연락주시기 바랍니다.
감사합니다.
개인회원가입으로 더욱 편리하게 이용하세요.
아이디/비밀번호를 잊으셨나요?