Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size
1. 서 론 2. 대상 지역 및 사용 자료 3. 방법론 3. 결과 및 토의 4. 결 론 사 사 References
본 연구의 목적은 다중시기 원격탐사 자료를 이용한 작물분류에서 기계학습 알고리즘과 딥러닝 알고리즘의 비교에 있다. 이를 위해 전라남도 해남군과 미국 Illinois 주의 작물 재배지를 대상으로 기계학습 알고리즘과 딥러닝 알고리즘에 대해 (1) 하이퍼파라미터와 (2) 훈련자료의 크기에 따른 영향을 비교 분석하였다. 비교 실험에는 기계학습 알고리즘으로 support vector machine(SVM)을 적용하고 딥러닝 알고리즘으로 convolutional neural network(CNN)를 적용하였다. 특히 CNN에서 2차원의 공간정보를 고려하는 2D-CNN과 시간차원을 확장한 구조의 3D-CNN을 적용하였다. 비교 실험 결과, 다양한 하이퍼파라미터를 고려해야 하는 CNN의 경우 SVM과 다르게 두 지역에서 정의된 하이퍼파라미터 값이 유사한 것으로 나타났다. 이러한 결과를 바탕으로 모델 최적화에 많은 시간이 소요되지만 최적화된 CNN 모델을 다른 지역으로 확장할 수 있는 전이학습의 적용 가능성이 높을 것으로 판단된다. 다음 훈련자료 크기에 따른 비교 실험 결과, SVM 보다 CNN에서 훈련자료 크기의 영향이 큰 것으로 나타났는데 특히 다양한 공간특성을 갖는 Illinois 주에서 이러한 경향이 두드러지게 나타났다. 또한 Illinois 주에서 3D-CNN의 분류 성능이 저하되는 것으로 나타났는데, 이는 모델 복잡도가 증가하면서 과적합의 영향이 발생한 것으로 판단된다. 즉 모델의 훈련 정확도는 높지만 다양한 공간특성이나 입력 자료의 잡음 효과 등으로 오히려 분류 성능이 저하된 것으로 나타났다. 이러한 결과는 대상 지역의 공간특성을 고려해 적절한 분류 알고리즘을 선택해야 하는 것을 의미한다. 또한 CNN에서 특히, 3D-CNN에서 일정 수준의 분류 성능을 담보하기 위해 다량의 훈련자료 수집이 필요하다는 것을 의미한다.
The purpose of this study is to compare machine learning algorithm and deep learning algorithm in crop classification using multi-temporal remote sensing data. For this, impacts of machine learning and deep learning algorithms on (a) hyper-parameter and (2) training sample size were compared and analyzed for Haenam-gun, Korea and Illinois State, USA. In the comparison experiment, support vector machine (SVM) was applied as machine learning algorithm and convolutional neural network (CNN) was applied as deep learning algorithm. In particular, 2D-CNN considering 2-dimensional spatial information and 3D-CNN with extended time dimension from 2D-CNN were applied as CNN. As a result of the experiment, it was found that the hyper-parameter values of CNN, considering various hyper-parameter, defined in the two study areas were similar compared with SVM. Based on this result, although it takes much time to optimize the model in CNN, it is considered that it is possible to apply transfer learning that can extend optimized CNN model to other regions. Then, in the experiment results with various training sample size, the impact of that on CNN was larger than SVM. In particular, this impact was exaggerated in Illinois State with heterogeneous spatial patterns. In addition, the lowest classification performance of 3D-CNN was presented in Illinois State, which is considered to be due to over-fitting as complexity of the model. That is, the classification performance was relatively degraded due to heterogeneous patterns and noise effect of input data, although the training accuracy of 3D-CNN model was high. This results imply that a proper classification algorithms should be selected considering spatial characteristics of study areas. Also, a large amount of training samples is necessary to guarantee higher classification performance in CNN, particularly in 3D-CNN.
I410-ECN-0102-2019-400-001363698
한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.
이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.
간행물명 | 수록권호 |
---|---|
|
53권 1호 ~ 53권 1호 |
충남과학연구지 |
37권 1호 ~ 37권 1호 |
|
37권 1호 ~ 37권 1호 |
자연과학연구논문집 |
18권 1호 ~ 18권 1호 |
|
52권 4호 ~ 52권 4호 |
|
42권 3호 ~ 42권 3호 |
|
36권 6호 ~ 36권 6호 |
|
36권 5호 ~ 36권 5호 |
|
52권 3호 ~ 52권 3호 |
|
42권 2호 ~ 42권 2호 |
|
36권 4호 ~ 36권 4호 |
|
52권 2호 ~ 52권 2호 |
|
36권 3호 ~ 36권 3호 |
|
42권 1호 ~ 42권 1호 |
|
36권 2호 ~ 36권 2호 |
|
52권 1호 ~ 52권 1호 |
|
36권 1호 ~ 36권 1호 |
충남과학연구지 |
36권 1호 ~ 36권 1호 |
|
51권 4호 ~ 51권 4호 |
|
28권 12호 ~ 28권 12호 |
자료제공: 네이버학술정보 |
---|
자료제공: 네이버학술정보 |
---|
본 자료는 원문파일이 존재하지 않거나 서비스를 위한 준비 중입니다.
빠른 시일 내에 서비스할 수 있도록 노력하겠습니다.
관련문의사항은 kiss@kstudy.com 으로 연락주시기 바랍니다.
감사합니다.
개인회원가입으로 더욱 편리하게 이용하세요.
아이디/비밀번호를 잊으셨나요?