3.149.235.171
3.149.235.171
close menu
KCI 등재
질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별
Noise-Robust Porcine Respiratory Diseases Classification Using Texture Analysis and CNN
최용주 ( Yongju Choi ) , 이종욱 ( Jonguk Lee ) , 박대희 ( Daihee Park ) , 정용화 ( Yongwha Chung )
UCI I410-ECN-0102-2018-500-003796914

집단으로 사육되는 돼지 농장에서 돼지 소모성 질환의 자동 탐지는 매우 중요한 문제이다. 특히, 밀집된 돈사에서 사육되는 돼지들의 호흡기 질환은 축산 농가의 막대한 경제적 손실을 야기하는 대표적 질병들 중 하나이다. 본 논문에서는 소리 신호 해석에 기반하여 돼지의 호흡기 질환을 조기 탐지 및 식별하는 잡음에도 강인한 시스템을 제안한다. 제안하는 시스템은, 먼저 1차원의 소리 신호를 2차원의 회색조 영상으로 변환한 후, DNS기법으로 질감 특징 정보를 갖는 이미지를 생성한다. 마지막으로, 이를 CNN에 입력함으로써 잡음에도 강인한 돼지 호흡기 질병 탐지 및 식별 시스템을 구현하고자 한다. 실제 국내 돈사에서 취득한 돼지의 발성음을 이용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 제안된 시스템은 경제적인 비용(저가의 소리 센서)과 시스템 정확도(96.0% 정확도)로 다양한 잡음 환경에서도 돼지의 호흡기 질병들을 탐지할 수 있음을 실험적으로 확인하였다. 제안된 시스템은 독자적인 혹은 기존 방법들의 보완책으로 사용될 수 있다.

Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. In particular, porcine respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this paper, we propose a noise-robust system for the early detection and recognition of pig wasting diseases using sound data. In this method, first we convert one-dimensional sound signals to two-dimensional gray-level images by normalization, and extract texture images by means of dominant neighborhood structure technique. Lastly, the texture features are then used as inputs of convolutional neural networks as an early anomaly detector and a respiratory disease classifier. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (low-cost sound sensor) and accurately (over 96% accuracy) even under noise-environmental conditions, either as a standalone solution or to complement known methods to obtain a more accurate solution.

[자료제공 : 네이버학술정보]
×