게 껍질을 반응조건을 조절하여 키토산 CsA, CsB와 CsC를 제조하였고 얻어진 결과는 다음과 같다. 제조한 CsA, CsB, CsC의 탈아세틸화도는 91.3%, 94.6%, 97.1% 이었으며 점성 도평균분자량은 9.8×105, 6.9×105, 4.2×10 5이었다. 분자량이 클수록 입자크기는 증가하였다. 또한 분자량이 클수록 제타전이가 낮았다. 투입량이 증가할수록 제타전이는 감소하다가증가하였다. 최적의 제타전위를 보인 투입량은 5000 ppm에서 1.2 mL, 3000 ppm에서 1.5 mL, 1000 ppm에서 1.8 mL 이었다. 투입량이 증가할수록 입자크기는 증가하다가 감소하였다. 가장 큰 입자크기를 보인 투입량은 5000 ppm에서 1.2 mL, 3000 ppm에서 1.5 mL, 1000 ppm에서 1.8 mL이었다. 키토산용액은 동일한 투입량에서는 분자량 및 농도가 높을수록 우수하였다. 키토산을 폐수처리에 활용도를 높이기 위해서는, 키토산농도에 대한 분자량 및 투입량을 선별적으로 적용해야 됨을 알았다
By adjusting the reaction conditions of crab shell, chitosan CsA, CsB and CsC were prepared, respectively. The deacetylation degree of prepared CsA, CsB, CsC was 91.3%, 94.6% , 97.1 %, and the viscosity average molecular weight were 9.8×10 5 , 6.9× 10 5 , 4.2×10 5 , respectively. The particle size was increased with the molecular weight of chitosan increasing. and Zeta potential was also decreased with the molecular weight of chitosan increasing. The trend of Zeta potential showed parabola-shaped curve with increasing dose. The optimal dosage of zeta potential was 1.2 mL for 5000 ppm, 1.5 mL for 3000 ppm, and 1.8 mL for 1000 ppm, respectively. The trend of Zeta potential showed mountain-shaped curve with increasing dose. The dosage of large particle size form was 1.2 mL for 5000 ppm, 1.5 mL for 3000 ppm, and 1.8 mL for 1000 ppm respectively. At the same dosage of chitosan, the higher the molecular weight and concentration were excellent. In order to increase the utilization of the waste water treatment, chitosan should be applied by both of molecular weight and dosage for concentration of chitosan.