감정요소를 사용한 정보검색시스템은 감정에 기반 한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반 한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.
In this paper, we propose a novel approach to employ emotional features to document retrieval systems. Five emotional features, such as HAPPY, SAD, ANGRY, FEAR, and DISGUST, have been used to represent Korean document. Users are allowed to use these features for retrieving their documents. Next, retrieved documents are learned by classification methods like cohesion factor, naive Bayesian, and, k-nearest neighbor approaches. In order to combine various approaches, voting method has been used. In addition, k-means clustering has been used for our experimentation. The performance of our approach proved to be better in accuracy than other methods, and be better in short texts rather than large documents.